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INTRODUCTION

Ever since experimental techiulques for observing dislocations
have been extant, one of the most commonly measured parameters in
the study of dislocations has been the density of dislocations.
Indeed whenever the yleld strength of a material is malnly dependent
on interactions between dislocations, one generally expects that the
higher the density of dislocatlons, the higher will be the yleld
stress. Flow stress, electrical resistivity, work hardening rate,
and many other parameters have been correlated with dislocation density
in numerous investigations,

One of the problems in making an experimental determination of
dislocation density by a direct observation technique 1s the lack of
a spatially continuous distribution of dislocations throughout a
material, Dislocations cluster near grain boundaries, form "tangles",
and generally do not arrange themselves in a uniform manner. This is
the main problem that will be examined here., A discussion of problems

in making measurements of density in non-homogeneous media will first

be given.
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SECTION I.
DENSITY DETERMINATIONS FOR NON-HOMOGENEOUS MEDIA

Wen one 1s measuring the mass density of a materlal like steel,
one simply selects a plece of it with a shapc which has an easily deter-
mined volume, say a cube, and with a mass which is readily determined by
a convenient scale or balance. Since the materdal is macroscopically
homogeneous it matters little If the plece has a volume of one cubic
centimeter or one cubic meter; one will obtain the same mass density.
However, for certain materials, namely non-homogeneous materials, the
size of the object one uses to make density determinations does matter.

The determination of mass density for a material such as
sintered WC-Co could be uncertain if it were possible to get a small enough
volune so that only a very small number (or no) WC particles were in the
Co mtrix’ (or if only one WC particle were used with no Co). On an even
smaller level of measurement, if, in the Co, one could determine the mass
of a volume containing only a Jew atoms, one would again have an uncertainty
in the detennirﬁtion of mass density. Long (1961) gives a discussion similar
to that given here for the case of fluilds.
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SECTION II.
RELATIONSHIPS BETWEEN VARIOUS DISLOCATION DENSITY DEFINITIONS

Dislocations are considered as line elements in a volume, so the
definition of dislocation density which is normally used is the line
length of dislocations per unit volume. This is the "true" or "length"
density, P, and its dimensions are [L™2]. Another density definition,
which 1s employed in surface investigations of dislocations such as the
etch-pit method, is the "intersection" density, Py The intersection
density is the number of dislocation lines plercing a unit surface. The
dimensions of intersection density are also [L™2]. The question arises
as to whether these two densities are numerically equal.

Hirsch (1956) and Lomer (1959) state that the total line length
in a unit volune is three times the number plercing a unit area. However,
Frank (1957) and Livingston (1962) point out that Hirsch and Lomer were
wrong and that the factor should be two. An example which shows the prob-
able source of Hirsch and Lamer's error follows. An appealing disiocation
configuration to take is straight dislocations running parallel to the
edges of a unit cube., If we take 100 dislocations equally distributed over
each face a~d one cm as the edge length; we have a total line length of
dislocations equal to 300 ecm. The length density is then 300 em™%, If we
count the points of emergence in one plane and divide by the area, we get
the intersection density. Table 1 shows the ratio of length and inter-

section densities when using different "counting planes" (Figure 1). We
see that by taking different counting planes we obtain different values of
and thus different values of pL/pI. The problem with this approach 1s

P
that the dislocaticn lines are not randomly arranged. This is such an
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appealing configuration for obtaining a correlation between intersections
and dislocations (and dislocation lengths) that as late as 1964, Akulov
(1964, p770) uses it also and incorrectly relates intersections with total
rumber of dislocations,

Since only indications about how to derive a relationship between
py ard p; are given in the literature (Frank, 1957; Livingston, 1962), a
rigorous derivation is given here. In figure 2a, a unit cube is shown
with all dislocations oriented at an angle ¢ to the normal to the horizontal
faces, All are drawn in the same direction for clarity. The intersection
density on the top face is the number of intersections, N, divided by unit
area, so py = N.

The length density is (1")(L) divided by unit volume. Thus
o™ N/cos ¢. Hence pr = P, cOS ¢. This is only for one angle, ¢, If
we now take the spatial average py over the volume of the unit sphere,

figure 2b, we get:

Ilecos 6| av
v

Pr
[ar

\'4
where dV is the differential volume dV = r sin ¢ d6d¢dr

20Lryéos ¢ sin ¢d¢ dee Ilr‘dr

d=0 O=0 reo

pI = n 27 1

Isin(bddbf d@[rdr

o ) 0

2p;, 2 T2

. sin

op =+ o T2 ‘
0
(1)

2 0p =0




T

SR BRI

WA TN IR WG

g o AT BN e

- R | A

b4

ﬂ“"ﬂ"ﬂﬂ-m”mvﬂl“ﬂ”“mm“

In transmission electorn microscopy, one can measure the total
projected length nf dislocation lines, &', in a given area. Since the
projected length, L', of a dislocation of length L is L|sing| (see
figure 2a), we can do the same analysis as we did in the preceeding
paragraph to obtain a relationship between true, &, and projected

total dislocation length for a random distribution:

v 2™ 1
J IL|sing|av L [ sin%¢d¢ I ae I rdr
! = LIPS v - 0 0 ]
£ IL = - T
I av J singd¢d I do J rdr
v 0 o 0
T T
p = 88 [ sin’¢ds = 1 [ (1-cos 2 ¢)dé
$=0 o]
po=F e (2)

Equation (2) has been indicated previously by Bailey and Hirsch (1960),

Knowing the thickness of the specimen, t, and the area over
which the projected length, ', was determined, a value of g, can be
found from equation (2):

oo Y3f
o, TV R
Although this is a valid method, it certainly is very tedious to use
since the measurement of &' is very time consuming for the large areas

which are required since dislocations are not uniformly distributed
throughout the material,
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To shorten the time consumed in escimating dislocation densities,
Ham (1961) applied the Buffon "needle" problem as extended by Smith and
Guttman (1953). Instead of measuring the projected length of dislocation
lines per unit area, the number of intersections, n, of dislocations with
a set of random grid lines of total length R can be counted. Using Smith
and Guttman's equation:

RN W

Ham modified equation (3) to find:

o, %% (5)
provided n is large enough. In Ham's severely work hardened aluminum,
using five lines drawn in random directions on a picture taken at 20,000X
gave a large enough value of n (v 50).

Equations (1) through (5) all depend upon a spatially random
orientation of dislocation lines. The relationship between Py and P,
equation (1), also assumes that each dislocation plercing the surface is

indicated (e.g., by an etch-pit). In addition to the requirement of random-
ness, an assumption made in obtaining equation (2), and thus equations (3)

through (5), 1s that all dislocations are visible in the projected image.
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SECTION III
THE VALIDITY OF ASSUMPTIONS MADE IN THE DERIVATION OF
DISLOCATION DENSITY RELATIONSHIPS

Dislocations are seldam found to be uniformlv distributec through-
out a specimen, They tend to form in tangles and networks, thus causing
non-uniform dislocation densities in a specimen (Wilsdorf, 1963). Also,
Prince and Richman (1969) in their study of Al-Si alloys have shown that
the smaller the silicon particle in the aluminum matrix, the larger the
relative dislocation density in the vicinity of the particle.

In the etch-pit method of observing dislocations an etchant
preferentially attacks the regions where dislocations (and other areas
of atomic mismatch) pierce the surface causing etch-pits. The longer
the etchant is allowed to stay in contact with the material, the larger
the etch-pits, For optimum resolution, etch-pits should be as small as
possible while still belng discernable, To increase the resolution,
Livingston (1962) and others have used shorter etching times which gave
optically non-discernable etch-pits but these can be seen by electron
microscopy by using a replication technique, The resolution limit for
optical microscopy is about 0,7u for the determination of etch-pits
(pv 10° cm™?) while that for the replication technique is about 0,2u
(pv 10° em™2), The spacing in very high density regions can be less than
this, so etch-pit methods generally underestimate dislocation densities.

The question of whether there is an etch-pit for every dislocation
and a dislocation for every etch-pit has not been resolved for all mater-
ials. Dash's (1957) work of decorating dislocations in silicon using
copper nitrate has shown a definite one-to-one correspondence of etch-pits

to decorated dislocations. Gilman and Johnston (1957) have convineingly
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argued for one-to-one correspondence in LiF crystals. One of their
strongest points 1s that when dislocations move away from original emer-
gence points, subsequent etching reveals flat bottomed pits. Measured
diffraction data for X-ray investigation of LiF is also pointed out by
them as evidence for one-to-one correlation since it relates closely

to the number of etch-pits formed,

Livingston (1962) points out the consistency of his data
(etch-pits in Cu on [111] planes) and electron microscopic investiga-
tions by Balley. However, Balley (1963) rightly feels that this agree-
ment is fortultous since electron microscope techniques also underestimate
dislocation density as we will see below.

Another investigation which examines the question of one-to-one
correspondence 1s the work of Ruff (1962). In Cu he etched [111] planes
of 1000 A thick electron microscope specimens. In each case Ruff observes
more than one dislocation per etch pit, but also notes that same nits
are caused by impurity aggregates which tends to make the etch-pit density
closer to the true Pr,e Unfortunately, after etching, the very thin foils
had to be washed, dried, and sometimes remounted for electron microscope
investigation. This process makes it possible for new dislocations to
be introduced ard for old ones to move. Ruff took great pains to minimize
this and feels that his findings are not greatly in error.

The resolution of the Berg-Barrett (reflection) and Lang
(transmission) topographic methods of X-ray microscopy limits their
usefulness to dislocation densities less than about 10° em™® (Otte and
Hren, 1966). The Debye-Scherrer Y-ray diffraction method will permit
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information to be gained sbout dislocation densities arnd distribution up
to the highest obtainable densities but with less detail (Gay et al, 1953).
Hordon (1962) states that "...errars in the X-ray measurements due to
instrumental broadening tend to overestimate dislocation density..."

In electron microscopy, two majur factors limit the accuracy o€
dislocation density determinations. The rearrangement of dislocations
during thinning and the overlapping of dislocation images both affect
experimental PL values.

In an early study, Ham and Sharpe (1961) argue that if the
dislocations in thin foils are really rardom, the intersection density as
obtained by counting the erds of lines on an electron-micrograph should
equal that obtained by the random lime method, equation (5). They found
that in cold-worked aluminum the intersection density was 20% greater
than the density found by the randaa line method. This indicates that
in the thinned foil the dislocaticns are preferentially oriented toward
the normal to the surface. Later, Valdré and Hirsch (1963) observed in
18-8 stainless steel (v 3000 2 thick f1lm) that during electropolishing,
about; 20% of the dislocations move. The general character of the networks,
etc., are not changed, but the dislocatlons move to relieve internal
stresses and shorten by rotating in their slip planes. The translation of
dislocations does not alter accuracy of estimates of P but rotations do
alter the accuracy since there is then preferential orientation. They
estimate that in networks their value of Py, may be in error in thin folls
by as much as 30%. Dislocation loops near the surface may slip out of
the foll due to image forces (Hirsch and Schmitz, 1962). This is a case
where translations of dislocations does matter in deference to Hirsch's own

previous statements.
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In electron microscopy investigations, particularly in
thicker foils, the overlapping of dislocation images becomes sericur,
As the folls are made thimner, overlapping is less of a problem but the
dislocations adjust thelr positions so the rearrangement error becores
greater (Wilsdorf, 1963). Also, care must be taken so that all imares
are visible, This can be checked by tilting the specimen (Ntte and
Hren, 1966).

As has been pointed out by Seeger (1964), the siegnificance of

counting mean, as opposed to local, dislocation densities in all methods

is questionable, Such mean densities underestimate the importance of
the regions of low dislocation density where most of the dislocation
movement during plastic deformation may occur, Also, the addition of
more dislocations to an already "impenetrable" barrier will increase

the dislocatlion density but will not change the effect of the barrier,

10
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CONCLUSTIONS

As has been rigorously derived here, the "true" or line length
dislocation density is twice the "intersection" density. The relation-
ships between these densities and various geometrical parameters have
been derived and their applicability discussed. In the case of disloca-
tion density determinations in very thin foils using transmission
electron microscopy, the assumption of a random distribution of disloca-
tion lines i1s not physically reasonable.

Further work needs to be done to put the thin foll dislocation
density determinations on a more sound physical footing. This further
work should include quantitative estimates (from geametrical arguments)
of the change in dislocation density due to dislocations rearranging
themselves to at least partially relieve internal stresses.

It may be convenient to argue that dislocation densities need
not be known too accurately, so why bother with "exact" mathematical
analyses? The obvious answer 1s that if you can do something correctly

with 1little (or no) extra work, why not?

11
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TARLE I

CCMPARISON OF LENGTH AND INTERSECTION DENSITIES
FOR A NON-RANDOM DISLOCATION ARRANGEMENT (LINES PARALLEL
TO THE THREE COORDINATE AXES) (p; = 300 em™?)

Emergence Area p P,
Plane Points (em?) (c:%"’-) 1
(100) 100 1 100 3
(110) 100 x 2 e 142 2,1
(111) 50 x 3 2. 1.7
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FIGURE 1 "Counting Planes" on unit cube
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pr = [cos ¢f pr

FIGURE 2a. Relatlonship between py & o, for
arbitrary ¢.

FIGURE 2b. Unit Sphere with spatial average of
dislocation directions.
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- 'Flde repert pives rigorous derivations of relationships hetween
var*iéus geametrical parvameters and the "intersection" and "line length"
dislocation densitles. The relationship between the two means of
obtalining dislocation density has not been derived previously in the
literature. A discussion is also given regarding the validity of the

assumptions made in the derivations. For a random arrangement of

dislocations, the "length" dislocation density is twice the "inter-

section" density. '
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ABSTRACT

This report gives rigorous derivations of relationships between
various geometrical parameters and the "intersection" and "line length"
dislocation densities. The relationship between the two means of
obtaining dislocatiun density has not been derived previously in the
literature. A discussion 1s also glven regarding the validity of the
assunptions made in the derivations. For a random arrangement of
dislocations, the "length" dislocation density is twice the "inter-

section" density.
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